6.7 Name (print first and last) 6.7 Polygons: Parallel & Perp ASLO: I can prove polygon qual	pendicular Lines ities using a coordinate grid.	Per G	Date: <u>2/14 du</u> cometry Regents 2	<u>ie 2/24</u> 2013-2014 Ms. Lomac
(1) You will be asked to prove that a set of 3 or 4 points can be connected to form one of the shapes below. To do this, you must know WHAT defines them. Review each of these shapes and be able to state what defines them.				
Isosceles Triangle Right Tri Square Kite	angle Equilateral Triangle Trapezoid	Parallelogram Isosceles Trapezoid	Rhombus	Rectangle
(2) 🔄 Below are qualities you they exist? PARALLEL	may need to prove. What EV	DENCE would you h	ave to show on a co	ordinate grid to prove
PERPENDICULAR (right angles)				
CONGRUENT SEGMENTS (equal length)				
BISECT (equal lengths)				
(3) \square Prove. Know WHAT you \square (a) Quadrilateral <i>KAT</i> T(7,3), and $E(1, -aa Prove that KATTgrid is optional.]b Prove that KAT$	a will prove. Know what EVIDE TE has vertices $K(1,5)$, $A(4,1)$. E is a trapezoid. [The use of the section	ENCE you will need. (,7), of the	COMMUNICATE you	ır evidence.

- Triangle *ABC* has coordinates A(-6, 2), B(-3, 6),6.7
- (b) and C(5,0). Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]

 \Box (c) Given: Quadrilateral *ABCD* has vertices A(-5,6), *B*(6,6), *C*(8,-3), and *D*(-3,-3).

Prove: Quadrilateral ABCD is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

Given: J(-4, 1), E(-2, -3), N(2, -1)(d)

Prove: ΔJEN is an isosceles right triangle. [The use of the grid is optional.]

Jim is experimenting with a new drawing program (e) on his computer. He created quadrilateral TEAM with coordinates T(-2,3), E(-5,-4), A(2,-1), and M(5,6). Jim believes that he has created a rhombus but not a square. Prove that Jim is correct. [The use of the grid is optional.]

- 6.7
- $\begin{array}{c} 6.7 \\ \hline \end{array} \text{ Jim is experimenting with a new drawing program} \\ \hline \end{array} (f) \begin{array}{c} \text{Jim is experimenting with a new drawing program} \\ \text{on his computer. He created quadrilateral } TEAM \end{array}$ with coordinates T(-2,3), E(-5,-4), A(2,-1), and M(5,6). Jim believes that he has created a rhombus but not a square. Prove that Jim is correct. [The use of the grid is optional.]

(g) Given: A(-2,2), B(6,5), C(4,0), D(-4,-3)Prove: *ABCD* is a parallelogram but not a rectangle. [The use of the grid is optional.]

6.7 Quadrilateral *MATH* has coordinates M(1,1), \square (h) A(-2,5), T(3,5), and H(6,1). Prove that quadrilateral *MATH* is a rhombus and prove that it is not a square. [The use of the grid is optional.]

Quadrilateral ABCD has vertices A(2,3), B(7,10),(i) C(9,4), and D(4,-3). Prove that *ABCD* is a parallelogram but not a rhombus. [The use of the grid is optional.]

6.7

(4) Answer each multiple choice question.

- (a) Triangle *ABC* has vertices A(0,0), B(3,2), and C(0,4). The triangle may be classified as
 - 1) equilateral
 - 2) isosceles
 - 3) right
 - 4) scalene
- (b) The vertices of $\triangle ABC$ are A(-1,-2), B(-1,2) and C(6,0). Which conclusion can be made about the angles of $\triangle ABC$?
 - 1) $m \angle A = m \angle B$
 - 2) $m \angle A = m \angle C$
 - 3) $m \angle ACB = 90$
 - 4) $m \angle ABC = 60$
- (c) The coordinates of the vertices of parallelogram *ABCD* are *A*(-3,2), *B*(-2,-1), *C*(4,1), and *D*(3,4). The slopes of which line segments could be calculated to show that *ABCD* is a rectangle?
 - 1) \overline{AB} and \overline{DC}
 - 2) \overline{AB} and \overline{BC}
 - 3) \overline{AD} and \overline{BC}
 - 4) AC and BD
- (d) Which type of triangle can be drawn using the points (-2, 3), (-2, -7), and (4, -5)?
 - 1) scalene
 - 2) isosceles
 - 3) equilateral
 - 4) no triangle can be drawn
- (e) Parallelogram ABCD has coordinates A(1,5), B(6,3), C(3,-1), and D(-2,1). What are the coordinates of E, the intersection of diagonals AC and BD?
 (2,2)
 - $\begin{array}{c} 1) & (2,2) \\ 2) & (4.5,1) \end{array}$
 - $\begin{array}{c} 2) & (4.5,1) \\ 3) & (3.5,2) \end{array}$
 - 4) (-1,3)

